Polysialic acid sustains cancer cell survival and migratory capacity in a hypoxic environment
نویسندگان
چکیده
منابع مشابه
Polysialic acid sustains cancer cell survival and migratory capacity in a hypoxic environment
Polysialic acid (polySia) is a unique carbohydrate polymer expressed on the surface of NCAM (neuronal cell adhesion molecule) in a number of cancers where it modulates cell-cell and cell-matrix adhesion, migration, invasion and metastasis and is strongly associated with poor clinical prognosis. We have carried out the first investigation into the effect of polySia expression on the behaviour of...
متن کاملInteraction of Polysialic Acid with CCL21 Regulates the Migratory Capacity of Human Dendritic Cells
Dendritic cells (DCs) are the most potent antigen-presenting cells (APCs). Immature DCs (iDCs) are situated in the periphery where they capture pathogen. Subsequently, they migrate as mature DCs (mDCs) to draining lymph nodes to activate T cells. CCR7 and CCL21 contribute to the migratory capacity of the DC, but it is not completely understood what molecular requirements are involved. Here we d...
متن کاملEffects of gallic acid and low level laser on cell survival and apoptosis in melanoma cancer cells (A375)
This article has no abstract.
متن کاملiNOS initiates and sustains metabolic arrest in hypoxic lung adenocarcinoma cells: mechanism of cell survival in solid tumor core.
Nitric oxide (NO) modulates cellular metabolism by competitively inhibiting the reduction of O2 at respiratory complex IV. The aim of this study was to determine whether this effect could enhance cell survival in the hypoxic solid tumor core by inducing a state of metabolic arrest in cancer cells. Mitochondria from human alveolar type II-like adenocarcinoma (A549) cells showed a fourfold increa...
متن کاملAnaerobic respiration sustains mitochondrial membrane potential in a prolyl hydroxylase pathway-activated cancer cell line in a hypoxic microenvironment.
To elucidate how tumor cells produce energy in oxygen-depleted microenvironments, we studied the possibility of mitochondrial electron transport without oxygen. We produced well-controlled oxygen gradients (ΔO2) in monolayer-cultured cells. We then visualized oxygen levels and mitochondrial membrane potential (ΔΦm) in individual cells by using the red shift of green fluorescent protein (GFP) fl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scientific Reports
سال: 2016
ISSN: 2045-2322
DOI: 10.1038/srep33026